Architecture:
Team 23

Kyle Mace (kim560)
Josh Quinn (jtq501)
Louis Hatton (lwh506)
Faris Alblooki (fma527)
Lewis Power (Ip1263)



Part A: Abstract and Concrete Representation of Software Architecture

As we decided to take an object oriented approach, we used UML diagrams to graphically represent the architecture,
since they lend themselves to, and often complement, an OOP architecture. In addition to this, the use of UML

o Makes for a clear indication/reminder to all teammates as to how the system should be implemented;
o Allows future individuals (from assessment 2) to easily come to grips with the architecture and intended
behaviour of our code.

Our abstract UML diagram was made through LucidChart, because it is widely used, has good reviews and is free to
register. Also considered was MarkupUML, however this was ultimately decided against, because we believed that
LucidChart could create diagrams of equal visual appeal, for less overall work than would be necessary with
MarkupUML.

Our concrete UML class diagram was made through the feature offered by the ‘intelli)’ software development
platform. This was chosen in favour of LucidChart because it precluded the possibility of making a mistake with the
chart, would save a lot of time, and would produce a diagram just as pleasant as one produced by LucidChart.

Abstract View:

Created during the initial stages of our project in order to visualise what we wanted to implement as a game.

User starts

/—\ the game
Game@ Volume ChangesJ
l Back ‘Ti
New Game Music On/Off
—EXit: Preferences
Exit Music Enabled (7
Preferences >

Change Volume
Music Enabled
Volume Enabled
Back

New Game

Ctrl+C

Load hoat, ...

Yes

Fire Cannon Left Mouse Click,
Ball In i Right Mouse Click,

Direction of Arrow Key Entry,
Mouse Ctrl+C

Is there
an object in the
way?

Move In Relevant

Arrow Key Entry— Direction

Right Click

Does This Put
User In The Vicinity of
An Enemy?

User Is Attacked
By Enemy

Yés

Do The
Cannon Ball(s) Hit An
Enemy?

Burst Attack

Yes—/

—

Deduce Enemy 1
Health

Concrete View:

From the abstract representation of the architecture, we could derive a general idea of what classes would be
needed and how they would interrelate, thus underlying the following concrete representation of the game.



s o 48 w08 ot

Entity

uuid
texture
entityType
health
height
location
maximum
skin

uniqueld

\

Location
double
Sprite
uuip
float

MovableEntity
maximumsSpeed float
originalSpeed

speed

CannonBal

iShots float

float

shootingCoolDown
burstCoolDown
shootingTimer
burstTimer
world
dead baolean

Type
LANGWITH
Rectangle andomid UUID

float d

cam Camera

deathPosition Vector2
hitBox

health

world
uuID

maxHealth

timeToReger

healSpeed

driftFactor

driveDirection

forward Velocity
lateralVelocity
position

sprite

texture
turnDirection
turnSpeed

HUDmanager CannonBall

stage Stage timer floaf
it World
body

isDestroyed boolear

Viewport

scare int Body

gold int

fontScale float target Vector2

timeCounter float

Y k]

setAngle  boolean

coolDownTimerTime ~ float angle float

healthBar Texture
Label
Label
Label
Label
Label
Label
Image
image

cannonBall  Sprite

scoreLabelCounter speed float

goldLabel teleported
LLEDS

finalY

boolean
scoreLabel float
cooldownTimer
health
healthLabel
goldCoin

float

damageDelt float

burstLogo
shootLogo Image
burstCooldownLogo Image
cooldown Stack
Table

Table

bottomRightTable
bottomLeftTable

ScreenType
LOADING
GAME
PREFERENCE
INFORMATION
SCREEN_CACHE Cache<ScreenType, Screen>

screen

stage
table
background
batch
Class<? extends Screen>

ChangeScreenTask PirateGame

screenType ScreenTy INSTANCE PirateGame

ConstantineCollege

College
counter
dead
hitBox

float
boolean
Rectangle

nonBallSprite Sprite

cooldownTimer
timer
healthBar
body

type

World

GamePreferences
PREF_NAME
MUSIC_ENABI

VOLUME_LEVEL
PREF_MUSIC_LEVEL
INSTANCE
musicEnabled
musicVolumeLevel
volumeEnabled

volumeLevel

LoadingScreen

soundController SoundControlle

SpriteBatch

WorldContactListener

AlcuinCollege
world

String
String
VOLUME_ENABLED String
String
st
GamePreferences
boolean
float
boolean
float

float
float
Texture

Body.

LangwithCollege Goodric

World world World world

Currency
INSTANCE Currency

currencyValues Map<Type, Integer>

Type
COINS
POINTS
GOLD

fancyName String

InformationScreen Location
stage

table

Stage xCoordinate float

yCoordinate float

Task x

spri y
SpriteBatch

Table
task float
background float

batch

CameraManager TiledObjectUtil

GameScreen
langwith
nstant
AleuinCollege
GoodrickCollege
Sprite
float
Ubmanager
Deathscreen
Explosions ArrayList<ExplosionControllers
_height
dth
playerShips Ship
camera OrthographicCamera
float
SpriteBatch
Sprite

Scale

Box2DDebug
OrthoCachedTiledMapRe

recordedSpeed
cameraStat
water
intro boolean
fioat
EntityAl
EntityAl
sCaptured int

zoomedAmount

player
colle
cannonBall Sprite

world

kCollege

World

Configuration ExplosionController So
SKIN Skir
PIXEL_PER_METER float
Cat_Player

Cat_walls

FRAME_LENGTH  float

short Exp

short anim can

Cat_Enemy short position seal

Cat_College short

World

ateTime

remove

BallsManager Cache<kK, V>
i int

listOfBalls ArrayLi

cache Map<k, V>

<CannonBall> argumentCheck Predicate<V>

Preconditions

music Music

buttonPress

volume

musicvolume.

EntityAi

speedMultiplier float

turnMultiplier float
texture Sprite
isPlayer booleat
steeringOutput SteeringAcceleration<Vectorz>
amountOfRotations float
angleToTarget float
angularvelocity float
behavior SteeringBehavior<Vector2>
body. Body
boundingRadius

independentFacing

linearVelocity
maxAngularAccelaration
maxLinearAcceleration
maxLinearSpeed

orientation

sprite
baolean
Body

zerolinearSpeedThreshold float

undController DeathScreen

stage Stage

sound viewport Viewport

losion Sound score float

nonshot  Sound Gold float

Noises  Music scorel Label

float Label

Label

gold

float gameOver

PreferenceScreen
Stage
Table

EntityType
SHIP
COLLEGE




Part B: Systematic Justification For Abstract and Concrete Architecture
For the architecture, we decided to take an object-oriented approach. This decision was arrived at due to:

The relatively small size of the project,

The fact that the inherent nature of the project lends itself to distinct objects with their own behaviours.
The fact that this approach benefits from the use of inheritance, reducing the amount of code and
duplication of classes.

Throughout the development, we built our concrete architecture based on all the requirements which had been
established prior to starting. This was achieved by:

e Ensuring all Classes were relevant to at least one requirement. (These are represented in the Justification
Table.)
e Removing or adjusting any planned developments which could not be related to any requirements.

This allowed for us to follow the requirements set out and prevented requirements from being forgotten about,
reducing the possibility of parts of the game missing in the final release.

In addition, the abstract representation of the object relationships were also referred to during development of our
concrete architecture. This included:

e Maintaining an object oriented structure.
e Utilizing inheritance down this structure to prevent the duplication of code

This approach to the development of the concrete architecture keeps the code manageable hence reducing the risk
of it being too complex. Furthermore, if the current requirements were to change or new ones were established, this
approach would allow for faster development of such new requirements without the need to re-develop core
features to allow them to work.

We also ensured that the behavioural aspect (flow) of the game follows the chart established within our abstract
architecture. This process included:

e Once new features were introduced, all members of the group would ensure that they adhered to the chart
created in the abstract architecture.

e Using the chart during development. Such as, when programming what the right click does, team members
were able to refer back to it.

Concrete architecture’s relation to the requirements.

Class Relation to Requirements

Entity Parent class implemented to describe the location, type of entity, health and entity dimensions
(UR_TRANSPORT, UR_MIN_COLLEGES, UR_COMBAT, UR_TERMINATE_DEFEAT, UR_GAMETIME,
FR_HEALTH, FR_ENEMY)

EntityAi The enemy Al inheriting from the Al library (UR_OTHER_SHIPS)

MovableEntity Parent class implemented to describe the speed attributes of Ship, ensuring it does not move
arbitrarily fast (UR_TRANSPORT, UR_PLAYABLE, FR_ARROW_KEYS)

College (from which Class to demarcate one college from another, inherits from Entity (UR_MIN_COLLEGES,
AlcuinCollege, UR_COMBAT, FR_HEALTH, FR_INCREASE_GOLD)
ConstantineCollege,
DerwentCollege,
LangwithCollege
inherits)

Ship Class to describe the various attributes of the users’ ship, such as current speed/direction,




inherits from MovableEntity (UR_TRANSPORT, UR_COMBAT, UR_TERMINATE_DEFEAT,
FR_HEALTH, FR_ENEMY_ATTACK, FR_BULLETS, FR_ARROW_KEYS)

GameScreen

Stores an ‘image’ of everything that is within frame and updates on the next frame in
accordance with what is moving/changing (UR_PLAYABLE, FR_GAME_SCREEN, FR_CAMERA,
NFR_REALTIME_GAMESCREEN)

LoadingScreen

Class implemented to allow the user to choose from starting the game, exiting the game or
selecting their game preferences

InformationScreen

Class implemented to inform the user, at the start of the game, what the controls and objective
are (UR_PLAYABLE, UR_DIFFICULTY, NFR_OPERABLE, NFR_USEABLE)

Currency

Stores the amount of points/gold in the game and to whom it belongs
(UR_POINT_ACCUMULATION, UR_GOLD_ACCUMULATION, FR_INCREASE_POINTS)

Configuration

Class to hold all commonly used settings that are shared to many classes in one place
(UR_PLAYABLE)

Location Stores the location of entity on the map, ensures entity moves properly across the map
(UR_TRANSPORT, UR_PLAYABLE, FR_CAMERA)
GamePreferences Class implemented to store the personal settings of the user, such as whether they have music
muted or not (UR_PLAYABLE)
PreferenceScreen Class implemented to allow the user to mute or adjust the music/sound effects (UR_PLAYABLE)

BallsManager

Class to keep track of all the balls on screen at any given time (UR_COMBAT, FR_BULLETS)

PirateGame

Instantiates the game (NFR_INTEGRABLE_SYSTEM)

WorldContactListener

Class to find which object collides with which other object, and apply damage to the one that
was hit (UR_COMBAT, UR_TERMINATE_DEFEAT)

CameraManager

Keeps the camera focused on the given target, usually the player, ensuring the user can see
what they are doing (UR_PLAYABLE, FR_CAMERA)

TiledObjectUtil

A dynamic class that finds the colliders all over the map and applies them to the map so that
the boats do not drive over the map and stays within the borders (UR_PLAYABLE)

Preconditions

Holds the conditions for the settings, like change volume and disable music (UR_PLAYABLE)

CannonBall A class to instantiate the cannon ball when fired (UR_COMBAT, FR_BULLETS)
EntityType Class to differentiate between the different types of entities (UR_COMBAT, UR_OTHER_SHIPS,
FR_ENEMY)
ChangeScreenTask A class which inherits from ScreenType and facilitates the changing from one task to another
(NFR_TIMING_OF_MENU_CHANGE)
Cache Stores useful, often accessed, information (FR_CAMERA, NFR_OPERABLE)

ExplosionController

A class to hold the information relating to an explosion (UR_COMBAT, UR_PLAYABLE, )

SoundController

A class which handles music and sound effects depending on users preferences (UR_PLAYABLE)

DeathScreen

Class implemented to show to the user once the Game is over (UR_PLAYABLE,
UR_TERMINATE_DEFEAT, UR_TERMINATE_COMPLETION)







